
m/s

La taille des chromosomes humains

armi les paramètres du génome, l'un des plus importants est sa taille, et celle de ses constituants, les chromosomes. Newton E. Morton (Southampton, GB) fait le point [1] sur les données actuelles, qui ne sont sans doute pas définitives. On distingue deux cartes du génome, physique et génétique. Pour la carte physique, le contenu d'un chromosome est mesuré avec la meilleure précision en tant que pourcentage du génome total. Pour transformer ce pourcentage en longueur, exprimée en mégabases (Mb), il faut connaître la taille totale du génome haploïde, estimée à 3 200 Mb, correspondant à 3,5 picogrammes. Les principales méthodes incluent la cytométrie de flux ou d'image et l'autoradiographie. Les cartes génétiques se fondent sur des données cytogénétiques et de liaisons génétiques qui laissent encore place à des approximations. On le sait, la taille génétique diffère selon le sexe, celle de la femme étant beaucoup plus étendue que celle de l'homme $(m/s n^{\circ} 4,$ vol. 7, p. 392). Enfin, l'analyse peut

Tableau I

LONGUEUR PHYSIQUE ET GÉNÉTIQUE DES BRAS DES CHROMOSOMES HUMAINS (suite du tableau, p. 964)

Chromosome	Longueur physique (Mb)	Longueur gé	nétique (cM)
		homme	femme
1p	128	106	189
1q	135	104	188
2p	99	83	152
2q	156	105	192
3p	99	80	106
3q	115	104	136
4p	56	52	117
4q	147	94	213
5p	52	53	93
5q	142	101	175
6р	65	57	110
6q	118	87	166
7p	65	60	81
7q	106	91	124
8p	50	50	75
8q	105	88	131
9p	51	50	64
9q	94	79	81
10p	44	54	81
10q	100	84	129
11p	58	53 63	84 100
11q	86		
12p 12q	39 104	45 84	80 148
12q 13p	16	0	0
13q	98	100	160
14p	16	0	0
14g	93	104	131
15p	17	0	0
15q	89	102	199
16p	39	60	96
16q	59	56	90
17p	28	51	126
17q	64	66	161
18p	20	50	76
18q	65	63	97

^{1.} Morton NE. Parameters of the human genome. *Proc Natl Acad Sci USA* 1991; 88: 7474-6.

Tableau I (suite)

LONGUEUR PHYSIQUE ET GÉNÉTIQUE DES BRAS DES CHROMOSOMES HUMAINS

Chromosome	Longueur physique (Mb)	Longueur génétique (cM)	
		homme	femme
19p	30	50	97
19q	37	50	97
20p	31	42	109
20g	41	42	109
21p	11	0	0
21q	39	76	108
22p	13	0	0
22q	43	70	92
Хр	62	50	87
Χq	102	0	133
Yp	13	50	
Yq	46	0	
Autosomes	3 063	2 809	4782

être raffinée en mesurant séparément la longueur des deux bras pour chaque chromosome. Le Tableau I (cicontre et p. 980) reproduit ces données qui sont les plus détaillées. Il est aisé d'en déduire la taille globale de chacun des chromosomes, ainsi que la moyenne des deux sexes pour la carte génétique. Le lecteur pourra s'étonner de voir que pour plusieurs autosomes (13, 14, 15, 21, 22) la taille du bras court soit notée 0 dans la carte génétique. C'est parce que, dans ces chromosomes acrocentriques, la taille du bras court est très réduite, qu'on n'y connaît aucune recombinaison, et qu'on n'y a localisé que des gènes d'ARN ribosomique. La connaissance de ces paramètres est importante pour les interprétations précises des résultats que fournit le projet d'étude du génome humain