La participation du PPARγ à diverses voies biologiques a un double intérêt, fondamental et clinique. En effet, le PPARγ intervient dans des processus physiopathologiques cruciaux tels que la différenciation, la résistance à l’insuline, le diabète de type 2, l’athérosclérose et le cancer. L’implication physiopathologique du PPARγ a encouragé la recherche de ligands endogènes. Les activateurs endogènes du PPARγ sont des acides gras et des dérivés d’acides gras qui représentent, cependant, des ligands de faible affinité. Des eïcosanoïdes (il s’agit d’une famille complexe et nombreuse de molécules à 20 atomes de carbone, eikosi signifie 20 en grec, dérivées d’acides gras insaturés dont le principal est l’acide arachidonique) tels que la 15-désoxy-Δ12,14 prostaglandine-J2, et des composants des LDL oxydées tels que les acides 9- et 13- hydroxyoctadécadiénoïque, constituent des ligands naturels plus spécifiques pour le PPARγ [2, 3]. L’activation du PPARγ par ces derniers ligands est apparue surprenante jusqu’à la démonstration de l’action du PPARγ dans le contrôle de l’expression de certains gènes de l’inflammation [4, 5]. Plusieurs ligands synthétiques de forte affinité ont été élaborés pour le PPARγ. Ces ligands appartiennent à la classe des thiazolidinediones (ou glitazones, dont les trois principales sont la troglitazone, la rosiglitazone et la pioglitazone) et sont utilisés en clinique pour leur propriété de sensibilisation de la réponse à l’insuline chez les patients diabétiques de type 2 [6]. De nouveaux agents pharmacologiques incluant des dérivés aryl-tyrosine ont été également développés et apparaissent comme des molécules prometteuses pour une utilisation en laboratoire et pour l’application clinique [7].
Le PPARγ intervient dans la différenciation adipocytaire par son action sur la régulation de l’expression de nombreux gènes impliqués dans le phénotype adipocytaire. Les premiers travaux ont montré que le PPARγ est capable de promouvoir l’adipogenèse dans des cellules non adipogéniques telles que les fibroblastes NIH-3T3. Le rôle du PPARγ dans l’adipogenèse a également été confirmé in vivo grâce à l’élaboration de modèles murins [8, 9]. Le PPARγ existe sous deux formes, nommées PPARγ1 et PPARγ2, qui diffèrent par leur extrémité N-terminale. Une étude très récente a permis de démontrer que c’est principalement le PPARγ2 qui contrôle l’adipogenèse [10].
Les facteurs de transcription de la famille des C/EBP (CCAAT/enhancer binding protein) jouent, eux aussi, un rôle important dans le phénotype adipocytaire. Les facteurs C/EBPβ et C/EBPδ induisent l’expression du PPARγ et du C/EBPα. Ces deux protéines organisent alors la pleine différenciation et le maintien du phénotype adipocytaire. Ce n’est que très récemment que le caractère indispensable de la présence du PPARγ pour l’action conjointe des facteurs C/EBPα et PPARγ dans l’adipogenèse a été décrit. En effet, le C/EBPαne peut induire, à lui seul, l’adipogenèse dans des cellules dans lesquelles le gène du PPARγ a été invalidé [11]. PPARγ et C/EBPα orchestrent donc une voie de signalisation unique du développement et du maintien du phénotype adipocytaire.
Un rôle du PPAR γ dans le diabète de type 2 est clairement suggéré par le fait que les thiazolidinediones améliorent la sensibilité de la réponse à l’insuline. De nombreuses études ont montré que le PPAR γ est la cible moléculaire de ces agents pharmacologiques. Cela est corroboré en particulier par le fait que de nouveaux ligands PPAR γ de grande affinité potentialisent fortement, in vivo, la sensibilité à l’insuline [7]. De plus, des mutations du gène du PPAR γ ont été identifiées chez quelques patients qui présentent une résistance sévère à l’insuline. Des études cliniques ont révélé une association entre l’allèle mutant humain et la diminution de l’activité du récepteur, un abaissement de l’indice de masse corporelle, une atténuation de l’obésité, une amélioration de la sensibilité à l’insuline et une diminution du risque de diabète de type 2 [12–14]. Mais il y avait un paradoxe car les muscles étaient les sites principaux des effets des thiazolidinediones. Or le muscle est très pauvre en PPAR γ alors qu’il est riche en PPARα. En fait, la réduction de la résistance à l’insuline liée au PPAR γ s’opère via la régulation de l’expression de gènes clés dans l’adipocyte (Figure 1). Ainsi, PPAR γ favorise le flux de triglycérides allant vers le tissu adipeux, réservant l’utilisation du glucose par le cerveau, le foie et le muscle. Des cytokines telles que l’interleukine-6 et le TNF-αsont impliquées dans la résistance à l’insuline associée à l’obésité. Le PPARγ atténue l’effet de ces cytokines dans le tissu adipeux. Une petite protéine sécrétée, appelée résistine, a été récemment découverte dans les cellules adipeuses et semble promouvoir la résistance systémique à l’insuline. Or, les thiazolidinediones répriment l’expression de ce facteur. Une autre protéine sécrétée, l’adiponectine, est une cible des thiazolidinediones et potentialise la sensibilité à l’insuline (→) [11].
| Figure 1. PPAR γ améliore la sensibilité à l’insuline. L’activation du PPARγ par les thiazolidinediones favorise le flux d’acides gras et de triglycérides allant vers le tissu adipeux. Il en résulte une potentialisation de l’utilisation du glucose en périphérie. AG: acides gras; TZD: thiazolidinediones. |
(→) m/s 2001, n° 12, p. 1353
L’action du PPARγ étant pléïotropique, la tendance actuelle consiste à élaborer des ligands à action plus efficace et surtout plus sélective. La recherche des mécanismes détaillés de l’action moléculaire de ce type de récepteur est en plein essor. Dès lors, il est envisageable d’élaborer des agents pharmacologiques capables de moduler l’expression de gènes cibles de PPARγ impliqués dans la sensibilité à l’insuline en épargnant la stimulation d’une adipogenèse exacerbée. Par son implication dans la différenciation, dans la régulation du métabolisme, dans le maintien de la sensibilité à l’insuline, le PPARγ constitue dorénavant une cible pharmacologique de premier plan.